Сопротивление теплопередаче стеклопакета

Мар 5, 2020 Стройка

Сопротивление теплопередаче стеклопакета

Сопротивление теплопередаче стеклопакета

Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче .

Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)

Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).

В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно — и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.

Как показатель влияет на выбор стеклопакета?

В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.

Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном — газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.

  1. Расшифровку обозначений формул стеклопакета можно посмотреть .

Теплопроводность стеклопакетов: сравнительная таблица

Насколько двойной стеклопакет эффективнее одинарного? Имеет ли смысл установка K и i-стекол? Играет ли роль толщина воздушной прослойки и заполнение аргоном? И какая между всем этим разница?

Все ответы в одной простой таблице.

Для удобства сравнения за базовый уровень был взят обычный однокамерный стеклопакет с четырехмиллиметровыми стеклами и межстекольным расстоянием в 16 мм. Также в таблицу добавлены сравнительные значения шумоизоляции стеклопакетов и разница в стоимости.

Сравнительная таблица эффективности стеклопакетов

Пояснения и условные обозначения:
В графе «формула стеклопакета» указана толщина в миллиметрах его «составляющих», где 4-миллиметровые стекла отделяют друг от друга воздушные прослойки (камеры), заполненные обычным воздухом или аргоном (где указана литера «а»).

К-стекло – энергосберегающее низкоэмиссионное стекло, отличающееся от обычного специальным прозрачным покрытием из оксидов металлов InSnO2. Данное покрытие отражает тепловое длинноволновое излучение обратно в помещение. Если величина излучательной способности простого стекла составляет 0,84, то у К-стекла обычно около 0,2. Это значит, что К-стекло возвращает в помещение примерно 70% теплового излучения, которое на него попадает. Одновременно К-стекло способно защитить помещение от нагрева в жаркую солнечную погоду, также отражая большую часть тепловых волн.

Существует еще более эффективное низкоэмиссионное i-стекло (их нет в таблице). Оно примерно в полтора раза эффективнее К-стекла и имеет величину излучательной способности до 0,04.

Коэффициент сопротивления теплопередачи стеклопакетов

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

  • кондиционирование;
  • отопление.

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.

Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.

Таблица сопротивления теплопередаче стеклопакетов

п/п Заполнение светового проема R0, м^(2)·°С/Вт
Материал переплета
Дерево или ПВХ Алюминий
1 Двойное остекление в спаренных переплетах 0.4
2 Двойное остекление в раздельных переплетах 0.44
3 Тройное остекление в раздельно-спаренных переплетах 0.56 0.46
4 Однокамерный стеклопакет ( два стекла ) :
обычного (с расстоянием между стекол 6 мм) 0.31
с И – покрытием (с расстоянием между стекол 6 мм) 0.39
обычного (с расстоянием между стекол 16 мм) 0.38 0.34
с И – покрытием (с расстоянием между стекол 16 мм) 0.56 0.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм) 0.51 0.43
oбычного (с расстоянием между стекол 12 мм) 0.54 0.45
с И – покрытием одно из трёх стекол 0.68 0.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

Дополнительно: Чем отличается энергосберегающий стеклопакет от обычного

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0С\Вт.

Стеклопакет и коэффициент сопротивления теплопередачи.

14.01.2016

Мы уже не один раз рассказывали о том, какие возможные решения различных проблем предлагает современное окно. И, как правило, многие из этих проблем решаются с помощью стеклопакета.

Тепло дома – это важная составляющая комфортного проживания. И, безусловно, основная задача окна – это сохранить тепло в вашем доме. Сегодня все чаще мы слышим об улучшении энергоэффективности, энергосбережении и тому подобном. Поэтому для думающего хозяина важно рационально использовать свои средства. Выбирая окно, особенно при наличии индивидуального отопления, важно понимать, что поставив, например, энергосберегающий стеклопакет, вы заметно сэкономите.

Так, при сравнении, например, устаревшего двухкамерного стеклопакета с обычными стеклами(4-10-4-10-4) и однокамерного стеклопакета с одним низкоэмиссионным(4-16-4И*) видно, что показатели сопротивления теплопередачи выше у однокамерного энергосберегающего стеклопакета( 0,53>0,47). При этом удельный вес меньше. Соответственно конструкция будет легче и энергоэффективнее.

Используя более одного энергосберегающего стекла или комбинируя низкоэмиссионные стекла с мультифцнкциональными, выбирая заполнение камер стеклопакета инертным газом (аргоном) мы можем добиться показателя коэффициента сопротивления теплопередачи более 1.

Конечно, энергосберегающее стекло дороже обычного, однако окно быстро окупится в результате экономии на отоплении. Тем не менее, напомним, что, для жилых помещений рекомендовано устанавливать двухкамерные стеклопакеты.

Кроме того, в компании «Русские Окна» вы можете приобрести энергосберегающие(мультифункциональные) окна по цене обычных до 31 января 2016 года.

В Европе уже давно на государственном уровне существуют соответствующие требования по энергоэффективности зданий, в том числе и окон. В России также был предложен законопроект о необходимости контроля и приведения в соответствие жилых зданий по показателям теплосбережения. В 2016 году планируется его вступление в силу.

Исходя из всего вышесказанного, можно сделать простой вывод — правильно подобранный стеклопакет/окно позволит Вам не только сохранить тепло в доме, но и уменьшить траты на отоплении.

Выбирая окна и стеклопакеты компании «Русские окна» вы получаете не только индивидуальный подход и качественный продукт, но и разумную экономию!

Ждем Вас в наших офисах продаж!

Окна > Требования к современным окнам
Теплоизоляция (теплозащита) | Вентиляция | Защита от ливневого дождя | Звукоизоляция | Светопропускание |
Теплоизоляция (теплозащита)

Теплоизоляция — одна из основных функций окна, которая обеспечивает комфортные условия внутри помещения.
Тепловые потери помещения определяются двумя факторами:

  • Трансмиссионными потерями, которые складываются из потоков тепла, которое помещение отдает через стены, окна, двери, потолок и пол.
  • Вентиляционными потерями, под которыми понимается количество тепла, необходимое для нагрева до температуры помещения холодного воздуха, проникающего через негерметичности окна и в результате вентиляции.

В России для оценки теплозащитных характеристик конструкций принято сопротивление теплопередаче Ro (м²·°C/Вт), величина, обратная коэффициенту теплопроводности k, который принят в нормах DIN.

Коэффициент теплопроводности k характеризует количество тепла в ваттах (Вт), которое проходит через 1м² конструкции при разности температур по обе стороны в один градус по шкале Кельвина (К), единица измерения Вт/м² К. Чем меньше значение k, тем меньше теплопередача через конструкцию, т.е. выше ее изоляционные свойства.

К сожалению, простой пересчет k в Ro (k=1/Ro) не вполне корректен из-за различия методик измерений в России и других странах. Однако, если продукция сертифицирована, то производитель обязан представить заказчику именно показатель сопротивления теплопередаче.

Основными факторами влияющими на значение приведенного сопротивления теплопередаче окна являются:

  • размер окна (в т.ч. отношение площади остекления к площади оконного блока);
  • поперечное сечение рамы и створки;
  • материал оконного блока;
  • тип остекления (в т.ч. ширина дистанционной рамки стеклопакета, наличие селективного стекла и специального газа в стеклопакете);
  • количество и местоположение уплотнителей в системе рама/створка.

От значения показателей Ro зависит и температура поверхности ограждающей конструкции, обращенная во внутрь помещения. При большой разнице температур происходит излучение тепла в сторону холодной поверхности.

Плохие теплозащитные свойства окон неизбежно приводят к появлению холодного излучения в зоне окон и возможности появления конденсата на самих окнах или в зоне их примыкания к другим конструкциям. Причем это может происходить не только, в следствие, низкого сопротивления теплопередачи конструкции окна, но также и плохого уплотнения стыков рамы и створки.

Сопротивление теплопередаче ограждающих конструкций нормируется СНиП II-3-79* «Строительная теплотехника», который является переизданием СНиП II-3-79 «Строительная теплотехника» с изменениями, утвержденными и введенными в действие с 1 июля 1989 г. постановлением Госстроя СССР от 12 декабря 1985 г. 241, изменением 3, введенным в действие с 1 сентября 1995 г. постановлением Минстроя России от 11 августа 1995 г. 18-81 и изменением 4, утвержденным постановлением Госстроя России от 19 января 1998 г. 18-8 и введенным в действие 1 марта 1998 г.

В соответствии с этим документом, при проектировании приведенное сопротивление теплопередаче окон и балконных дверей Ro следует принимать не менее требуемых значений, Roтр (см. таблицу 1).

Таблица 1. Приведенное сопротивление теплопередаче окон и балконных дверей

Здания и сооружения Градусо-сутки отопительного периода, °C сут Приведенное сопротивление теплопередаче окон и балконных дверей не менее Rотр , м²·°C/Вт
Жилые, лечебно-профилактические и детские учреждения, школы, интернаты 2000
4000
6000
8000
10000
12000
0,30
0,45
0,60
0,70
0,75
0,80
Общественные, кроме указанных выше, административные и бытовые, за исключением помещений с влажностным или мокрым режимом 2000
4000
6000
8000
10000
12000
0,30
0,40
0,50
0,60
0,70
0,80
Производственные с сухим и нормальным режимом 2000
4000
6000
8000
10000
12000
0,25
0,30
0,35
0,40
0,45
0,50
Примечание:
1. Промежуточные значения Rотр следует определять интерполяцией
2. Нормы сопротивления теплопередаче светопрозрачных ограждающих конструкций для помещений производственных зданий с влажностным или мокрым режимом, с избытками явного тепла от 23 Вт/м3 , а также для помещений общественных, административных и бытовых зданий с влажностным или мокрым режимом следует принимать как для помещений с сухим и нормальным режимами производственных зданий.
3. Приведенное сопротивление теплопередаче глухой части балконных дверей должно быть не менее, чем в 1,5 раза выше сопротивления теплопередаче светопрозрачной части этих изделий.
4. В отдельных обоснованных случаях, связанных с конкретными конструктивными решениями заполнения оконных и других проемов, допускается применять конструкции окон, балконных дверей и фонарей с приведенным сопротивлением теплопередаче на 5% ниже устанавливаемого в таблице.

Градусо-сутки отопительного периода (ГСОП) следует определять по формуле:

ГСОП = (tв — tот.пер.) · zот.пер.

где
tв — расчетная температура внутреннего воздуха, °C (согласно ГОСТ 12.1.005-88 и нормам проектирования соответствующих зданий и сооружений);
tот.пер. — средняя температура периода со средней суточной температурой воздуха ниже или равной 8°C; °C;
zот.пер. — продолжительность периода со средней суточной температурой воздуха ниже или равной 8°C, Сут (по СНиП 2.01.01-82 «Строительная климатология и геофизика»).

По СНиП 2.08.01-89* при расчете ограждающих конструкций жилых зданий следует принимать : температуру внутреннего воздуха 18 °C в районах с температурой наиболее холодной пятидневки (определяемой согласно СНиП 2.01.01-82) выше -31°C и 20°C при -31°C и ниже; относительную влажность воздуха равной 55 %.

Таблица 2. Температура наружного воздуха (выборочно, полностью см. СНиП 2.01.01-82)

Для облегчения работы проектировщиков в СНиП II-3-79*, в приложении приведена также справочная таблица, содержащая приведенные сопротивления теплопередаче окон, балконных дверей и фонарей для различных конструкций. Пользоваться этими данными необходимо в том случае, если значения R отсутствуют в стандартах или технических условиях на конструкции. (см. примечание к табл. 3)

Таблица 3. Приведенное сопротивление теплопередаче окон, балконных дверей и фонарей (справочное)

Заполнение светового проема Приведенное сопротивление теплопередаче Rо , м² ·°С/Вт
в деревянных или ПВХ переплетах в алюминиевых переплетах

1. Двойное остекление в спаренных переплетах

0,4

2. Двойное остекление в раздельных переплетах

0,44

0,34*

3. Блоки стеклянные пустотные (с шириной швов 6 мм) размером, мм:

194х194х98
244х244х98

0,31 (без переплета)
0,33 (без переплета)

4. Профильное стекло коробчатого сечения

0,31 (без переплета)

5. Двойное из органического стекла для зенитных фонарей

0,36

6. Тройное из органического стекла для зенитных фонарей

0,52

7. Тройное остекление в раздельно-спаренных переплетах

0,55

0,46

8. Однокамерный стеклопакет из стекла:
обычного
с твердым селективным покрытием
с мягким селективным покрытием

0,38
0,51
0,56

0,34
0,43
0,47

9. Двухкамерный стеклопакет из стекла:
обычного (с межстекольным расстоянием 6 мм)
обычного (с межстекольным расстоянием 12 мм)
с твердым селективным покрытием
с мягким селективным покрытием
с твердым селективным покрытием и заполненным аргоном

0,51
0,54
0,58
0,68
0,65

0,43
0,45
0,48
0,52
0,53

10. Обычное стекло и однокамерный стеклопакет в раздельных переплетах из стекла:
обычного
с твердым селективным покрытием
с мягким селективным покрытием
с твердым селективным покрытием и заполненным аргоном

0,56
0,65
0,72
0,69




11. Обычное стекло и двухкамерный стеклопакет в раздельных переплетах из стекла:
обычного
с твердым селективным покрытием
с мягким селективным покрытием
с твердым селективным покрытием и заполненным аргоном

0,68
0,74
0,81
0,82




12. Два однокамерных стеклопакета в спаренных переплетах

0,70

13. Два однокамерных стеклопакета в раздельных переплетах

0,74

14. Четырехслойное остекление в двух спаренных переплетах

* В стальных переплетах
Примечания:
1. К мягким селективным покрытиям стекла относят покрытия с тепловой эмиссией менее 0,15, к твердым — более 0,15.
2. Значения приведенных сопротивлений теплопередаче заполнений световых проемов даны для случаев, когда отношение площади остекления к площади заполнения светового проема равно 0,75.
3. Значения приведенных сопротивлений теплопередаче, указанные в таблице, допускается применять в качестве расчетных при отсутствии этих значений в стандартах или технических условиях на конструкции или не подтвержденных результатами испытаний.
4. Температура внутренней поверхности конструктивных элементов окон зданий (кроме производственных) должна быть не ниже 3°С при расчетной температуре наружного воздуха.

Кроме общероссийских нормативных документов существуют еще и местные, в которых определенные требования для данного региона могут быть ужесточены.

Например, согласно Московским городским строительным нормам МГСН 2.01-94 «Энергоснабжение в зданиях. Нормативы по теплозащите, тепловодоэлектроснабжению.», приведенное сопротивление теплопередаче (Ro) должно быть не менее 0,55 м²·°C/Вт для окон и балконных дверей (допускается 0,48 м²·°C/Вт в случае применения стеклопакетов с теплоотражающими покрытиями).

В этом же документе содержатся и другие уточнения. Для улучшения теплозащиты заполнений светопроемов в холодный и переходный периоды года без увеличения числа слоев остекления следует предусматривать применение стекол с селективным покрытием, размещая их с теплой стороны. Все притворы рам окон и балконных дверей должны содержать уплотнительные прокладки из силиконовых материалов или морозостойкой резины.

Говоря о теплоизоляции необходимо помнить, что летом окна должны выполнять противоположную зимним условиям функцию: защищать помещение от проникновения солнечного тепла в более прохладное помещение.

Следует также принимать во внимание, что жалюзи, ставни и т.п. работают как временные теплозащитные устройства и существенно уменьшают теплопередачу через окна.

Таблица 4. Коэффициенты теплопропускания солнцезащитных устройств
(СНиП II-3-79*, приложение 8)

Солнцезащитные устройства

Коэффициент теплопропускания
солнцезащитных устройств βсз

А. Наружные

  1. Штора или маркиза из светлой ткани
  2. Штора или маркиза из темной ткани
  3. Ставни-жалюзи с деревянными пластинами
  4. Шторы-жалюзи с металлическими пластинами

Б. Межстекольные (непроветриваемые)

  1. Шторы-жалюзи с металлическими пластинами
  2. Штора из светлой ткани
  3. Штора из темной ткани

В. Внутренние

  1. Шторы-жалюзи с металлическими пластинами
  2. Штора из светлой ткани
  3. Штора из темной ткани

0,15
0,20
0,10/0,15
0,15/0,20
0,30/0,35
0,25
0,40
0,60/0,70
0,40
0,80

Примечание:
1. Коэффициенты теплопропускания даны дробью: до черты — для солнцезащитных устройств с пластинами под углом 45°, после черты — под углом 90° к плоскости проема.
2. Коэффициенты теплопропускания межстекольных солнцезащитных устройств с проветриваемым межстекольным пространством следует принимать в 2 раза меньше.

admin

Поadmin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *