Повторное заземление нулевого

Ноя 10, 2019 Стройка

Повторное заземление нулевого

Вопросам организации заземляющего контура на стороне потребителя всегда уделяется повышенное внимание, поскольку от правильности его обустройства, в конечном счете, зависит здоровье пользователей электросетей.

Согласно требованиям нормативных документов (ПУЭ, в частности) заземляющий контур, защищающий работающих на электрооборудовании людей, обязателен при любых обстоятельствах. Это объясняется тем, что передаваемая по отдельному защитному проводу функция заземления, устроенного на трансформаторной подстанции, очень ненадежна из-за большой вероятности обрыва нулевой жилы («отгорания» нуля).

В связи с этим на обустройство так называемого повторного заземления на вводе в здание всегда обращают внимание инспекторы по Технике Безопасности (ТБ).

Для чего нужно повторное заземление

С технической точки зрения повторное заземление (ПЗ) – это специально обустраиваемое на стороне потребителя защитное устройство, гарантирующее безопасность работающих на линии людей. Оно «срабатывает» в случае пропадания связи с подстанцией по нулевому или совмещенному проводу.

Схема работы повторного заземления при обрыве нуля на линии ВЛ-0,4 кВ

Для обустройства повторного заземления допускается применять так называемые «естественные» заземлители, к которым относят:

  • металлические каркасы конструкций, уже проложенных в почве и имеющих непосредственный контакт с ней;
  • металлические защитные кожуха и броню силовых кабелей, заглубленных в грунт;
  • участки стальных труб (исключение составляют газовые магистрали и нефтепроводы);
  • железнодорожные рельсы.

Обратите внимание: Использование в качестве контура повторного заземления уже уложенных в почве готовых конструкций упрощает монтаж ЗУ и позволяет минимизировать расходы на его обустройство.

Отметим, что их сопротивление никак не контролируется пользователем, поэтому его значение может в любое время непредсказуемо измениться. Чтобы исключить такое положение – в особо ответственных случаях обустраиваются искусственные заземляющие конструкции, имеющие стабильные технические характеристики.

Повторное заземление нулевого провода – один из способов организации искусственной системы, способной продублировать функцию станционного ЗК. Последним объяснением исчерпывается вопрос о том, что такое есть повторное заземление и как его можно обустроить.

Применение повторного заземления в классической системе TN

Повторное заземление является важнейшим элементом комплексной системы защиты от поражения электрическим током. Его используют для заземления нулевого защитного провода РЕ и РЕN электрических сетей до 1000 Вольт в системе ТN с глухозаземленной нейтралью трансформатора.

Классические системы заземления принято различать по состоянию их нейтрали, которая может быть глухо заземленной или изолированной. В соответствие с этим признаком они делятся на две большие группы и обозначаются соответствующим сочетанием английских букв. «Т» означает земля, а «N» – нейтраль, что при их совместном написании символизирует заземленный «нуль». Помимо этого в данных системах предусмотрены проводники и шины, обозначаемые как PE (отдельный заземляемый повод) или же PEN –совмещенная рабочая и защитная шина.

В зависимости от выбранной схемы постоянно заземленный нейтральный провод N может быть как независимым от защитного PE-проводника, а может соединяться с ним, образуя шину PEN. В первом случае получаем систему TN-S («Select» или раздельная прокладка), а во втором – TN-C.

Обратите внимание: Здесь «C» означает «Common» или совместная проводка.

Существует еще один вариант, когда два провода (защитный и нулевой) на стороне подстанции объединены, а при вводе на объект разделяются на защитный проводник PE и функциональную шину N. Подобная организация системы защиты потребителя носит название TN-C-S и также предполагает обязательность заземления нулевого провода.

Применение системы TN-C

Система TN-C широко применялась в распространенных ранее двухпроводных сетях, которые нередко встречаются и сегодня (в основном – в домах старой застройки). С точки зрения рядового пользователя она характеризуется тем, что в этом случае в розетках отсутствует специальный заземляющий контакт.

Система заземления TN-C

В сетях, сконструированных на основе этой схемы, нулевой провод заземляется только на станционной стороне (фото слева). Поэтому при его случайном обрыве или так называемом «отгорании» все подключенные к линии электроустановки и приборы оказываются совершенно незащищенными. Это вынуждает пользователей персонально заземлять каждую единицу эксплуатируемого в доме бытового прибора или устанавливать УЗО.

Обратите внимание: Для владельцев частных и загородных домов условия в этом случае более чем выгодные, поскольку они могут организовать повторное заземление, обустроив выносной контур прямо на участке.

В современном строительстве эта системы уже много лет не используется; сегодня ей на смену пришла более эффективная TN-S.

Система TN-S более совершенна в смысле организации защиты, то есть имеет большую степень электрической безопасности. Это объясняется тем, что в ней имеется «самостоятельный» заземленный проводник, служащий исключительно для этих целей. Правда, за счет использования дополнительного медного материала стоимость системы существенно возросла. В случае трехфазного питания, например, от источника электроэнергии (трансформаторной подстанции) приходится прокладывать кабель, содержащий пять проводов. Это три обязательные фазы A, B и C, а также нейтраль и защитный проводник PE.

Система заземления TN-S

При реализации системы TN-C в электрических цепях организация повторного заземления нулевого провода также обязательна. Она производится методом соединения нейтрального проводника с земляной жилой защитного контура, обустраиваемого на стороне потребителя.

Система TN-C-S

Эта схема разработана с целью устранения недостатков системы TN-S и предусматривает использование в качестве общей шины совмещенного PEN-проводника, проложенного только до ввода на объект.

Важно! Непосредственно перед вводом в здание общая шина разделяется на две жилы (на нейтраль N и защитный провод PE).

Эта система представляет собой нечто среднее между двумя уже рассмотренными вариантами защиты. Она не лишена тех же недостатков, что и TN-S, так как в случае повреждения проводника PEN на линии от подстанции до объекта, все установленные в нем электроприборы окажутся под опасным напряжением. Для этого случая ПУЭ предписывают дополнительную защиту шины PEN от деформаций и механических повреждений.

Система заземления TN-C-S

В этой системе обустраиваемый контур заземления – это повторное соединение нулевого провода PEN с ЗУ перед вводом на конкретный объект. При случайном обрыве проводника на участке линии питания «трансформатор подстанции – здание» заземление осуществляется исключительно посредством PE провода.

Для этого на вводе в электроустановку напряжением до 1 кВ или в распределительном шкафу дома провод PEN обязательно «расщепляется» на две шины. Одна из них используется как рабочий нулевой проводник, а вторая – в качестве заземляющей жилы.

Рассмотренный подход к организации ПЗ позволяет исключить занос в силовые цепи дома наведенных токов через эффект, оказываемый э/м полями внешних коммуникаций. Вдобавок к этому оно снижает потенциал на корпусах оборудования и бытовых приборов при случайном обрыве N-проводника.

Воздушные линии электропередач

На опорах линий электропередач (ВЛ) согласно действующим положениям ПУЭ повторное заземление PEN-проводника, прокладываемого от трансформаторной подстанции, делается обязательно. Объяснить это можно потребностью повышения электрической безопасности персонала, работающего на ВЛ, а также созданием условий для надежного срабатывания автоматов защиты.

Схема повторного заземления нулевого провода в системе электроснабжения

Обратите внимание: Количество и частота размещения повторных заземлителей вдоль трассы прокладки линий электропередач определяется подготовленным для нее проектом электроснабжения.

ПЗ обязательно обустраивается в следующих местах:

  • На опорах, расположенных в конце ВЛ.
  • На столбах, непосредственно перед вводом «воздушки» на объект.
  • Перед любым ответвлением от трассы, протяженность которого составляет более 200 метров.

Заземление опоры ВЛ

Для монтажа заземляющего устройства обычно используется подземная часть ВВ опоры. В случае, когда ее недостает для получениятребуемых характеристик – делается дополнительный контур. Для оформления спуска с вершины столба применяется проволока без изоляции диаметром 6,0 или 8,0 мм. Помимо PEN-провода, обязательно заземляются все элементы конструкции опоры, изготовленные из металлов. Согласно требованиям ПУЭ сопротивление повторного контура не должно превышать 30-ти Ом.

На столбах с приборами уличного освещения обязательному заземлению подлежат не только провода СИП, но также корпуса светильников и другие детали самих опор, изготовленные на основе металла. Для этих целей в городской черте с ограниченными возможностями заглубления вместо типовых вертикальных штырей нередко используются горизонтальные полосы. После их монтажа полагается провести испытание обустроенной системы, проверив реальное сопротивление заземляющего устройства посредством специальных измерительных инструментов. Без повторного заземления самонесущих проводов и опор городского освещения, данный участок трассы приемной комиссией к эксплуатации не допускается.

Применение устройств отключения

Разделение PEN-проводника на две жилы (PE и N)

Чтобы обеспечить полную защищенность работающих на линии людей и рядовых потребителей согласно ПУЭ, помимо повторного заземления рекомендуется применять УЗО или так называемые «дифференциальные» автоматы. Каждое их этих устройств допускается использовать в комбинированной системе ТN-C-S, где PEN-проводник разделен на две жилы (PE и N). Это разделение традиционно организуется на вводном щите с использованием главной заземляющей шины (ГЗШ).

Важно! Совместное использование УЗО с заземляющим контуром значительно повышает уровень безопасности работающих на линии людей, одновременно защищая их от утечек тока.

В электроустановках где для повторного заземления не имеется подходящих условий, допускается ограничиться несколькими УЗО, включенными по схеме со ступенчатой защитой. Такой организацией системы безопасности удается предотвратить удар человека током за счет мгновенного отключения поврежденного участка линии от сети.

В заключение статьи предлагаем Вам посмотреть видео о монтаже повторного заземления:

Повторное заземление нулевого защитного проводника

Повторное заземление нулевого защитного проводника — это заземление, выполненное через определенные промежутки по всей длине нулевого провода. Повторное заземление позволяет снизить напряжение нулевого провода и зануленного оборудования относительно земли при замыкании фазы на корпус как при нормальном режиме, так и при обрыве нулевого провода.

При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

Согласно ПУЭ, проводники зануления должны выбираться так, чтобы при замыкании на корпус или на нулевой провод возникал ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя или номинальный ток расцепителя автоматического теплового выключателя, имеющего обратнозависимую от тока характеристику. При защите сети автоматическими выключателями с электромагнитными расцепителями кратность тока принимается равной 1,1; при отсутствии заводских данных — 1,4 для автоматов с номинальным током до 100 А, а для прочих автоматов 1,25. Во взрывоопасных установках кратность тока должна быть не менее 4 при защите предохранителями, не менее 6 при защите автоматами с обратнозависимой от тока характеристикой и аналогично предыдущему при автоматах, имеющих только электромагнитный расцепитель. Полная проводимость нулевого провода во всех случаях должна быть не менее 50 % проводимости фазного провода.

Должна обеспечиваться непрерывность нулевого провода от каждого корпуса до нейтрали источника питания. Поэтому все соединения нулевого провода выполняются сварными. Присоединение нулевого провода к корпусам электроприемников осуществляется сваркой или с помощью болтов.

В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.

При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника (см. рис.), участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли Uк, равным:

где Iк – ток КЗ, проходящий по петле фаза-нуль, А; zPEN– полное сопротивление участка нулевого защитного проводника, обтекаемого током Iк, Ом (т. е. участка АВ).

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Напряжение Uк будет существовать в течение аварийного периода, т. е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника тока и индуктивным сопротивлением петли фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями RL1 и RPE, то (4.3) примет вид:

Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением rП (на рис. 4.9 это заземление показано пунктиром), то Uк снизится до значения, определяемого формулой:

где Iз – ток, стекающий в землю через сопротивление rп, А; Uав – падение напряжения в нулевом защитном проводнике на участке АВ; r0– сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех присоединенных к нему корпусов, в том числе корпусов исправных установок, окажется близким по значению фазному напряжению сети (рис. 4.10, а). Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится, и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную.

Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока Iз, А, через землю (рис 4.10, б), благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до значений, определяемых формулой

При этом корпуса установок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли:

где r0 – сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т. е. не может обеспечить тех условий безопасности, которые существовали до обрыва.

Повторное заземление — неотъемлемая часть общей системы заземления. Его используют для заземления нулевого защитного провода РЕ и РЕN электрических сетей до 1000 Вольт в системе ТN с глухозаземленной нейтралью трансформатора.

Для устройства повторного заземления используют естественные заземлители. Сопротивление естественных заземлителей ничем не определяется и в любое время его значение может измениться, поэтому применяют искусственное заземление с заранее определенными параметрами.

Монтаж такого устройства нужен для снижения опасности поражения электрическим током людей, находящихся в непосредственной близости от электроустановок. Повторное заземление монтируют на вводе в здание, где находится электроустановка.

При наличии такого устройства в аварийных ситуациях напряжение на корпусах электроустановок и электроприборах уменьшается. Разность потенциалов между землей и корпусом электроустановки снижается, а человек, касающийся корпуса электроприбора, становится защищенным от поражения электрическим током.

Применение системы TN

Для электроснабжения основной части промышленных электроустановок до 1000 Вольт, жилых домов и квартир используется система ТN. Для надежного срабатывания аппаратов защиты и повышения электробезопасности необходимо выполнять заземление нулевого провода.

Система ТN подразделяется на следующие типы:

  1. ТN-C, когда нулевой рабочий проводник N объединен с нулевым защитным проводником РЕ.
  2. TN-S, когда нулевой рабочий и нулевой защитный проводник на подстанции разделены.
  3. TN-C-S, когда нулевой рабочий и нулевой защитный проводники на подстанции объединены, а при вводе в здание электроустановки разделяются на два проводника.

Применение системы TN-С

Эта система заземления была и остается самой распространенной в стране. При такой системе на подстанции заземляется нейтраль трансформатора. Нулевой проводник присоединяется к заземленной нейтрали на подстанции. В этом случае нулевой проводник выполняет функции рабочего и защитного проводников и называется РЕN-проводником.

Электропитание электроустановок осуществляется двумя жилами при однофазном питании или четырьмя жилами при трехфазном питании. При применении системы TN-С в электророзетках отсутствует заземляющий контакт, а корпуса всех промышленных электроприборов и электроустановок на производстве зануляются.

Недостаток системы в угрозе поражения электрическим током при обрыве нулевого проводника. Достоинство — недорогой электромонтаж. По правилам устройства электроустановок на смену системе TN-C пришли другие, более безопасные системы — TN-S и TN-C-S.

Применение системы TN-C-S

Система TN-C-S — основная для применения в соответствии с ПУЭ. В ней от трансформаторной подстанции до ввода в здание используется объединенный проводник РЕN, который на вводе в здание присоединяется к повторному заземлению и разделяется на рабочий проводник N и на защитный проводник РЕ.

Такое разделение осуществляется, как правило, в главном электрощите промышленного объекта или жилого здания. Далее, после главного электрощита, по зданию проводники N и РЕ разделены. В этом случае электророзетки имеют заземленный контакт, к которому присоединяется РЕ-проводник.

Система TN-C-S наиболее оптимальна с точки зрения цены и электробезопасности. Применяется в проектируемых жилых и промышленных зданиях.

Применение системы TN-S

Система ТN-S наилучшая с точки зрения электробезопасности, но самая дорогостоящая. При ее обустройстве необходимо прокладывать от трансформаторной подстанции пять жил при трехфазном и три жилы — при однофазном электропитании. Это увеличивает финансовые затраты по сравнению с системами TN-C и TN-C-S. Повторному заземлению подлежит РЕ проводник.

На опорах воздушных линий электропередач необходимо повторно заземлять PEN-проводник, идущий от трансформаторной подстанции. Это нужно делать, чтобы повысить электробезопасность участков ВЛ и для надежной работы автоматических выключателей. Количество повторных заземлений на трассе воздушной линии определяется проектом электроснабжения.

Такое устройство обязательно применяется на опорах в конце воздушных линий электропередач, на опорах перед вводом в промышленное здание или частный дом, перед ответвлением от трассы ВЛ протяженностью более 200 м. Для монтажа используется подземная часть опоры. Если ее недостаточно, применяется дополнительный контур заземления, обычно состоящий из одного или двух заземлителей.

Спуск с верхнего конца опоры осуществляется проволокой диаметром 6 или 8 мм. Кроме PEN-провода, нужно заземлить все металлические элементы конструкции опоры. Сопротивление этого вида заземления не должно быть больше 30 Ом.

На опорах уличного освещения должно быть организовано заземление корпусов светильников и всех металлических частей опоры. Для этого используются специальные заземлители и заземляющие проводники. В городской черте не всегда имеется возможность установки стандартных вертикальных заземлителей, поэтому часто используются в качестве заземлителей горизонтальные полосы, заглубленные в землю.

После установки заземлителей обязательно контролируют сопротивление заземляющего устройства специальными приборами. Наличие такого заземления делает безопасным эксплуатацию опор уличного освещения.

Совместимость с устройствами отключения

Чтобы сделать работу человека максимально безопасной, ПУЭ рекомендует применять УЗО или дифавтоматы. Такие устройства можно применять в системе ТN-C-S, когда PEN-провод разделен на PE и N-проводники. Это разделение происходит в вводном электрощите на главной заземляющей шине. Причем подключение главной заземляющей шины производится к повторному заземлению или к заземленному на вводе в здание PEN-проводнику.

УЗО или дифавтомат реагирует на токи утечки в нагрузке. При появлении утечки в изоляции или при повышении влажности появляются токи утечки. При превышении определенного значения тока утечки УЗО обесточивает защищаемую цепь. Дифференциальный автомат обесточивает цепь при появлении в нагрузке короткого замыкания.

Применение устройства вторичного заземления нулевого провода влияет на время срабатывания автоматических выключателей. Чем ниже показатель сопротивления заземления, тем быстрее и надежнее сработает автоматический выключатель, а значит, выше безопасность человека при аварийных ситуациях в электрических сетях.

Нормы сопротивления заземляющих устройств

Сопротивление контура этого типа заземления — характеристика растекания тока при аварийных ситуациях в электрооборудовании. В соответствии с правилами устройства электроустановок сопротивление системы заземления должно быть нормированным.

Для опор воздушных линий электропередач и опор уличного освещения сопротивление заземления нулевого провода должно быть не более 30 Ом.

Повторные заземления нулевого защитного провода

Кратковременно до срабатывания защиты на всех элементах цепи зануления появляется напряжение. Повторные заземления предназначаются для снижения этого напряжения как при исправном (целом), так и при неисправном (имеющим разрыв) нулевом защитном проводе. Рассмотрим эти случаи.

1. Нулевой защитный провод не имеет обрыва (рис). Если повторное заземление нулевого провода отсутствует, напряжение на корпусе поврежденного электрооборудования равно падению напряжения на нулевом проводе (рис.а): Uз= Iкз*Zнп.

Ток, проходящий через тело человека при его прикосновении к корпусу, будет равен Iчел= Uз/Rчел= Iкз*Zнп/Rчел.

Схема прохождения тока в цепи зануления без повторного заземлителя (а) и с повторным заземлителем (б): Zнп – сопротивление нулевого провода; Rп, Ro – сопротивления повторного и рабочего заземлителей; Iкз – ток короткого замыкания, Iз – ток, проходящий через повторный заземлитель; Uз – падение напряжения на нулевом проводе; 1 – эпюры распределения этого напряжения вдоль нулевого провода.

Предельное максимальное время срабатывания защиты по условиям безопасности должно быть не более, с: tоткл = 50/Iчел (мА).

Из формулы для Iчел следует, что его можно снизить уменьшением значения Zнп. Кроме того, этот ток понижается, если заземлить нулевой защитный проводник вблизи электроприемника. Тогда напряжение Uз будет приложено к двум последовательно соединенным сопротивлениям – рабочему Ro и повторному Rп, которые сработают как делители напряжения. Потенциал на корпусе понизится до значения на рис.б: Uз’= Ip*Rп=

=Iкз*Zнп*Rп/(Ro+Rп), где Iз – ток, проходящий через рабочий и повторный заземлители.

Ток, проходящий через тело человека при наличии повторного заземления нулевого защитного провода, будет равен:

Iчел= Iкз*Zнп*Rп//

Пример. Определить ток, проходящий через тело человека, коснувшегося хзануленного корпуса в момент замыкания, и допустимое время срабатывания защиты. Фазное напряжение Uф=220 В. Сопротивление Zнп= 2Zф; Rп=Ro; Zт 0, т.е сопротивление обмоток трансформатора мало.

Согласно формуле для Iчел при наличии повторного заземления:

Iчел= *2Zф*(Rп/2Rп)*1/1000=0,073 А=73 мА,

tоткл = 50/73 =0,68 с.

Если бы повторное заземление отсутствовало, ток, проходящий через тело человека в приведенном примере, был бы в 2 раза больше: Iчел=

=*2Zф*1/1000 = 0,146 А = 146 мА.

Схема прохождения тока короткого замыкания Iкз’ при обрыве нулевого провода;

Ro, Rn – сопротивления рабочего и повторного заземлителей.

Чтобы обеспечить безопасность в этом случае, максимально допустимое время работы защиты должно быть в 2 раза меньше, чем в предыдущем: tоткл.доп =50/146 = 0,34 с.

2. Нулевой защитный провод имеет обрыв (рис наверху). В этом случае зану-ленное эл. оборудование не отключится и на корпусах появятся опасные потенциалы.

Повторное заземление нулевого защитного провода не создает полной безопасности, но все же снижает напряжение на корпусах, соединенных с нулевым проводом за местом его обрыва, до значения: Uз=Iкз’*Rп=

=Uф*Rп/(Rп+Ro).

Напряжение на зануленном оборудовании, находящемся до места обрыва: Uз= Iкз’*Ro=Uф*Ro/(Rn+Ro).

Нормирование повторных и рабочего заземлений.На воздуш-ных Л зануление осуществляют нулевым рабочим проводом, проложенным на тех же опорах, что и фазные провода. Нулевой провод должен быть повторно заземлен на вводах в здание и на концах линии независимо от их длины, а также на концах ответвлений от ВЛ. Одновременно все металлические части опор (арматура, крюки, штыри) присоединяют к нулевому рабочему (защитному) проводу, а сами опоры ВЛ заземляют согласно ПУЭ.

Общее сопротивление всех повторных заземлений рассматриваемой ВЛ нормируется: не более 5, 10, 20 Ом при линейных напряжениях трансформатора 660, 380, 220 В соответственно. При этом каждое из повторных заземлений должно иметь сопротивление Rп.доп не более 15, 30, 60 Ом соответственно. Также установлены нормы на сопротивление рабочего заземления Ro.доп нейтрали источника трехфазного тока: 2, 4, 8 Ом при номинальных напр. тр-ра 660, 380, 220 В соответственно.

При удельном сопротивлении грунтов более 100 Ом*м к нормированным значениям сопротивлений допускается повышающий коэффициент, равный /100.

В кабельных сетях в качестве нулевого защитного проводника используется, в первую очередь, нулевой рабочий провод (4 жила кабеля), предназначенный для питания электроприемников однофазного тока. При его отсутствии прокладывают специальный нулевой защитный провод, либо используют металлические конструкции, стальные трубы электропроводки, алюминиевые оболочки кабелей, кожухи шинопроводов, трубопроводы ( за исключением трубопроводов для транспортировки горючих веществ, канализации, центрального отопления).

Расчет зануления.Фазные и нулевые защитные проводники должны обладать таким сопротивлением, при котором выполнялось бы условие срабатывания защиты: Zф.доп+Zн.п. доп <=Uф/(k*Iуст)-Zт/3, где Iуст – уставка защиты, зависящая от установленной мощности Р, Iуст=Р/U, k – коэффициент по нормам.

Активные и индуктивные сопротивления проводов образуют полное сопротивление петли фазный-нулевой провод, которое вычисляется по формуле: Zф.расч+Zн.п.расч= .

Активные сопротивления фазных Rф и нулевых проводов зависят от их длины l (м), удельного сопротивления матьериала р (Ом*м), сечения s (кв.м).

Активное сопротивление проводов вычисляется по формуле R=pl/s.

Индуктивные сопротивления Хф и Хн.п проводов их меди малы, а из стали весьма значительны. В стальном проводнике оно зависит от плотности тока i=I/s (s – площадь сечения) и профиля проводника. Чем больше плотность тока I и отношение периметра к площади сечения проводника Р/s, тем меньше индуктивное сопротивление. Сопротивление стальных проводников Хф и Хн.п принимают из таблиц при значениях соответствующих току к.з. Iкз=k*Iном.

Приняв условно а=1м, d=0,014 м, получим Х’= 0,6 Ом/км. Это значение рекомендуется в ПУЭ для расчета зануления.

Способы повышения эффективности зануления.Из формулы

Для Iк.з параграфа – нормирование зануления следует, что ток к.з. можно увеличить, понижая сопротивления тр-ра и петли. Для этого выбирают тр-ры со схемой треугольник-звезда. Они имеют меньшее полное сопротивление, чем схема звезда-звезда. Сопротивление обмоток мощных тр-ров мало (табл)

Таблица. Полное сопротивление тр-ров с вторичным напряжением 400-230 В

Схема соеди-нения обмо -ток Полное сопротивление Zт при мощности Р, кВ*А
0,9 3,11 0,56 1,95 0,23 0,78 0,06 0,20 0,03 0,08

Для того, чтобы обеспечить малое сопротивление линий зануления, их рекомендуется выполнять короткими и простыми, увеличивать сечение проводников, стальные проводники заменять проводниками из цветных металлов с малым индуктивным сопротивлением. Внешнее индуктивное сопротивление снижают прокладкой нулевого провода вместе или в непосредственной близости с фазными проводами, сокращая расстояние между нулевым и фазными проводами. Наибольшее сопротивление нулевого защитного провода не должно превышать удвоенного сопротивления фазного провода.

Для снижения напряжений на зануленных оболочках оборудования рекомендуется повторные заземлители приближать к узлам нагрузки, сокращая протяженность зануляющих проводников, уменьшать сопротивление повторных заземлителей. Напряжение прикосновения можно значительно снизить, повышая потенциал поверхности пола, на котором стоит человек. Для этого рекомендуется соединять с нулевым проводом все заземленные металлические конструкции здания, трубопроводы, металлическую арматуру полов, перекрытий, плит. Тогда напряжение прикосновения уменьшается до величины, примерно равной (от 0,1 до 0,01)Uз.

В случае обрыва нулевого защитного провода для снижения потенциалов до и после места обрыва рекомендуется создавать дополнительную металлическую связь между оболочками оборудования с помощью естественных заземляющих проводников (рельсы, трубопроводы, металлические конструкции и т.п.)

Исполнение схем зануления.Нулевой провод проходит от трансформаторной подстанции до общей сборки ввода в здание предприятия. Внутри здания имеется разводка нулевого провода к местным распределительным щиткам. Зануляющие проводники присоединяют одним концом к зажиму «0» нулевого провода, а другим – к корпусу электрооборудования (болтом). Светильники, электрифицированный инструмент и другие однофазные потребители, включаемые в сеть двумя проводами – фазным и нулевым, зануляют специальным защитным проводником. В этом случае нулевой рабочий провод нельзя использовать в качестве зануляющего защитного проводника, так как при его обрыве корпус (в случае замыкания на него тока) окажется под фазным напряжением. Повторные заземления сооружают при вводе в здание (заземлен корпус рас-пределительного щита сборки) и на конце ответвления электропроводки внутри здания, так как ее длина превышает 200 м. Заземления опор ВЛ служат дополнительными повторными заземлителями.

Контроль зануления.Контроль зануления производят после его монтажа и периодически не реже одного раза в 5 лет в процессе эксплуатации. Полное сопротивление петли фазный-нулевой провод измеряют для наиболее удаленных от источника питания электроприемников, а также наиболее мощных. Кроме того, измеряют сопротивление заземления нейтрали и повторных заземлителей, проверяют целостность зануляющей сети, снимают характеристику зависимости времени действия автоматов от тока к.з. для наиболее удаленных от источника питания электроприемников.

Сопротивление петли фаза-нуль измеряют с помощью вольтметра-амперметра в отключенной эл.установке (рис.) Для этого понижающий тр-р с вторичным напряжением 36 или 12 В подсоединяют к нулевому и фазному проводам, как можно ближе к сетевому трансформатору. Фазный провод соединяют перемычкой с корпусом (короткое замыкание). Включив рубиль-

Ник в цепи понижающего тр-ра, реостатом устанавливают ток в петле фазный-нулевой провод. Затем измеряют вольтметров напряжение Uизм и амперметром ток I изм. Полное сопротивление петли фазный-нулевой провод будет: Zф-нп = Uизм/Iизм-Zт/3, где Zт – полное сопротивление тр-ра току замыкания на корпус.

Ток однофазного короткого замыкания: Iк.з=0,85 Uф/Zф-н.п, где 0,85 – коэф. запаса, учитывающий погрешности измерения.

Существуют схемы контроля зануления без отключения напряжения.

Когда и для чего необходимо применять повторное заземление?

Все новости

25.03.16 , , , ,

При проектировании системы энергоснабжения на объекте потребителя, проектировщики по умолчанию закладывают систему заземления. Система заземления является защитой для людей от поражения током, возникающим при повреждении электрооборудования и бытовых приборов. Существует несколько вариантов их исполнения и у одного из наших читателей возник вопрос о системе заземления типа TN-C.

Вопрос: если в частном доме уже установлена система TN-C, нужно ли устанавливать дополнительное заземление?


Изображение схемы подключения в системе TN-C

Для ответа немного вспомним о данном способе устройства заземления. Некоторое время назад, данная система широко применялась в многоквартирных домах, а также в сетях уличного освещения. Обозначение букв TN-C означает объединение функционального и защитного нулевых проводников, т.е. нулевой и защитный проводник объединены в один проводник PEN. Проводник PEN соединяет контур заземления, выполненный в трансформаторной подстанции, питающей объект с розетками потребителя, таким образом, создавая защитное заземление. Преимуществом системы является простота и дешевизна монтажа. Явный недостаток — это угроза поражения людей током.

Ответ: данная система устарела и ее необходимо менять. Пункт 1.7.80 запрещает использовать УЗО в системе TN-C, а т.к. без УЗО невозможно обеспечить надлежащую электробезопасноть, то и эта система оказывается под запретом. Систему TN-C нужно модифицировать до TN-C-S, разделив PEN-проводник на два проводника: N — нулевой и PE-защитный. Так как мы рассматриваем случай, когда объект — это частный дом, то рекомендуем выполнить повторное заземление с сопротивлением не более 30 Ом в соответствии с пунктом 1.7.103 ПУЭ 7 изд., установив модульно-штыревое заземление. Заземляющее устройство выполняется из омедненных металлических штырей, установленных в землю, и объединяется с PE-проводником.

В современном мире жизнь человека невообразима без электрических приборов, поэтому важно обеспечить безопасность электросети для вас и ваших близких. Позвоните или напишите нашим техническим специалистам, и они рассчитают подходящую под вашу задачу конфигурацию заземления!

admin

Поadmin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *