Чередование фаз

Окт 17, 2019 Стройка

Чередование фаз

Содержание

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A к U­B, а за ним к U­C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

В настоящее время встречаются две основные схемы обозначения выводов обмоток электродвигателей:
— система в соответствии с ГОСТ183-74, применяется на электродвиагтелях разработанных до 1987г.
— система в соответствии с ГОСТ26772-85, которая соответствует международным стандартам.

В соответствии с первой системой выводы обмоток статора обозначаются буквой «С» и цифрой, которой пронумерованы начала и концы фаз: первая фаза — С1 и С4, вторая — С2 и С5, третья — С3 и С6. Нейтраль — О.
Допускается обозначать выводы обмоток статора изоляцией разного цвета: первая фаза — желтый (С1), желтый с черным (С4), вторая фаза — зеленый (С2), зеленый с черным (С5), третья фаза — красный (С3), красный с черным (С6). Нейтраль — черный.

В соответствии с международными стандартами в настоящее время выводы обозначают латинскими буквами: первая фаза обмотки статора — U, вторая — V, третья — W. Начало и конец фазы обозначают цифрами: 1 и 2. Нейтраль — N.
Цветовые обозначения такие же как описаны выше.

Обозначения должны наносится непосредственно на концы выводов или на колодку зажимов рядом с выводами.
В случае если соединения фаз сделаны внутри корпуса двигателя, то начала и концы фаз не обозначают, а наносят только буквенные обозначения без цифр.

В процессе самостоятельной установки и подключения электрооборудования (этом могут быть различные светильники, вентиляция, электроплитка и т.п.) можно заметить, что коммутационные клеммы обозначены буквами L, N, PE. Особое значение здесь имеет маркировка L и N. Кроме обозначения проводов в электрике по буквам, их помещают в изоляцию различного цвета.

Это значительно упрощает процедуру определения, где находится фаза, земля или нулевой провод. Чтобы устанавливаемый прибор смог работать в нормальном режиме, каждый из этих проводов должен быть подключен на соответствующую клемму.

Обозначение проводов в электрике по буквам

Электрические коммуникации в бытовой и промышленной сфере организовываются посредством изолированных кабелей, внутри которых находятся проводящие жилы. Они отличаются друг от друга цветом изоляции и маркировкой. Обозначение l и n в электрике дает возможность на порядок ускорить реализацию монтажных и ремонтных мероприятий.

Нанесение данной маркировки регулирует специальный ГОСТ Р 50462: это относится к тем электроустановкам, где используется напряжение до 1000 В.

Как правило, они комплектуются глухозаземленной нейтралью. Зачастую электрическое оборудование данного типа имеют жилые, административные и хозяйственные объекты. Во время монтажа электрических сетей в зданиях этого типа необходимо хорошо разбираться в цветовых и буквенных указаниях.

Обозначение фазы (L)

Сеть переменного тока включает в себя провода, находящиеся под напряжением. Правильное их название – » фазные «. Это слово имеет английские корни, и переводится как «линия» или «активный провод». Фазные жилы несут особенную опасность для здоровья человека и имущества. Для безопасной эксплуатации их покрывают надежной изоляцией.

Использование оголенных проводов под напряжением чревато следующими последствиями:

  1. 1. Поражение током людей. Это могут быть ожоги, травмы и даже смерть.
  2. 2. Возникновение пожаров.
  3. 3. Порча оборудования.

При обозначении проводов в электрике фазные жилы маркируются буквой «L». Это сокращение английского термина » Line «, или » линия » (другое название фазных проводов).

Есть и другие версии происхождения этой маркировки. Некоторые специалисты считают, что прообразом стали слова «Lead» (подводящая жила) и Live (указание на напряжение). Подобная маркировка используется также для указания на зажимы и клеммы, на которые должны коммутироваться линейные провода. К примеру, в трехфазных сетях каждая из линий маркируется еще и соответствующей цифрой (L1, L2 и L3).

Действующие отечественные нормативы, регулирующие обозначение фазы и нуля в электрике (ГОСТ Р 50462-2009), предписывают помещать линейные жилы в коричневую или черную изоляцию. Хотя на практике фазные провода могут быть белыми, розовыми, серыми и т.п. В таком случае все зависит от производителя и изолирующего материала.

Обозначение нуля (N)

Для маркировки нейтральной или нулевой рабочей жилы сети используют букву «N» . Это сокращение термина neutral (в переводе – нейтральный). Так во всем мире принято называть нулевой проводник. У нас в стране в основном используют слово «Ноль».

Скорее всего, за основу здесь взято слово Null. Буква «N» в схеме указывает на контакты или клеммы, предназначенной для коммутации нулевой жилы. Подобное обозначение принято и для однофазных, и для трехфазных схем. В качестве цветового обозначения нулевого провода применяют синюю или бело-синюю (бело-голубую) изоляцию.

Обозначение заземления (PE)

Кроме обозначения фазы и нуля, в электрике также применяется специальное буквенное указание PE (Protective Earthing) для провода заземления. Как правило, они всегда входят в состав кабеля, наряду с нулевыми и фазными жилами. Подобным образом маркируются также контакты и зажимы, предназначенные для коммутации с заземляющим нулевым проводом.

Для удобства монтажа жилы для заземления помещены в желто-зеленую изоляцию. Домашний мастер должен уяснить, что эти цвета всегда указывают только на заземляющие провода. Для обозначения фазы и нуля в электрике желтый и зеленый цвет никогда не используется.

Как показывает практика, при организации электрических сетей в зданиях жилого сектора иногда допускаются нарушения общепринятых нормативов использования цвета изоляции и соответствующей буквенно-цифровой маркировки. В таком случае не всегда достаточно обладать умением расшифровывать обозначения L, N или РЕ.

Чтобы подключение электрооборудования было действительно безопасным, необходимо проверять соответствие маркировки реальному положению вещей. Для этого используют специальные приборы (тестеры) или подручные приспособления. При отсутствии опыта подобных работ для собственной безопасности лучше пригласить опытного электрика с соответствующим допуском.

Обозначение l и n в электрике

Обозначение фазы и нуля в электрике введено для того, чтобы электрические сети были безопасными и удобными в использовании. Для этого используется специальная буквенная маркировка (l и n) и изоляция соответствующего цвета. Также могут встречаться жилы с маркировкой РЕ желто-зеленого цвета: таким образом обозначены заземляющие провода.

Кроме того, эти же буквенные обозначения применяются на соединительных контактах и клеммах. Все, что потребуется сделать во время установки электроприбора – подвести каждый из проводов на клемму. Для перестраховки каждый из проводов желательно проверить тестером.

На фото ниже хороший пример как обозначаются L и N в электрике на оборудовании. В частности на фото промаркированы клеммы УЗМ (устройства защиты многофункциональное) для правильного подключения проводов.

Для того чтобы правильно прочитать и понять, что означает та или иная схема или чертеж, связанные с электричеством, необходимо знать, как расшифровываются изображенные на них значки и символы. Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Все они отображаются латинскими символами в виде одной или двух букв.

Однобуквенная символика элементов

Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Буквенные обозначения соответствуют ГОСТу 2.710-81. Например, буква «А» относится к группе «Устройства», состоящей из лазеров, усилителей, приборов телеуправления и других.

Точно так же расшифровывается группа, обозначаемых символом «В». Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания. Эта группа дополняется аналоговыми или многоразрядными преобразователями, а также датчиками для указаний или измерений. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т.д.

Все буквенные обозначения, соответствующие наиболее распространенным элементам, для удобства пользования объединены в специальную таблицу:

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

Лазеры, мазеры, приборы телеуправления, усилители.

Аппаратура для преобразования неэлектрических величин в электрические (без генераторов и источников питания), аналоговые и многозарядные преобразователи, датчики для указаний или измерений

Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

Микросборки, интегральные схемы

Интегральные схемы цифровые и аналоговые, устройства памяти и задержки, логические элементы.

Различные виды осветительных устройств и нагревательных элементов.

Обозначение предохранителя на схеме, разрядников, защитных устройств

Плавкие предохранители, разрядники, дискретные элементы защиты по току и напряжению.

Источники питания, генераторы, кварцевые осцилляторы

Аккумуляторные батареи, источники питания на электрохимической м электротермической основе.

Устройства для сигналов и индикации

Индикаторы, приборы световой и звуковой сигнализации

Контакторы, реле, пускатели

Реле напряжения и тока, реле времени, электротепловые реле, магнитные пускатели, контакторы.

Дроссели, катушки индуктивности

Дроссели в люминесцентном освещении.

Двигатели постоянного и переменного тока.

Измерительные приборы и оборудование

Счетчики, часы, показывающие, регистрирующие и измерительные приборы.

Выключатели и разъединители в силовых цепях

Силовые автоматические выключатели, короткозамыкатели, разъединители.

Варисторы, переменные резисторы, терморезисторы, потенциометры.

Коммутационные устройства в цепях сигнализации, управления, измерительных приборах

Различные типы выключателей и переключателей, а также выключатели, срабатывающие действием различных факторов.

Стабилизаторы, трансформаторы напряжения и тока.

Различные типы преобразователей и устройства связи

Выпрямители, модуляторы, демодуляторы, дискриминаторы, преобразователи частоты, инверторы.

Полупроводниковые и электровакуумные приборы

Диоды, тиристоры, транзисторы, стабилитроны, электронные лампы.

Антенны, линии и элементы, работающие на сверхвысоких частотах.

Антенны, волноводы, диполи.

Гнезда, токосъемники, штыри, разборные соединения.

Механические устройства с электромагнитным приводом

Тормоза патроны, электромагнитные муфты.

Оконечные устройства, ограничители, фильтры

Кварцевые фильтры, линии моделирования.

Буквенные обозначения из двух символов

Для более точной расшифровки и обозначении элементов на электрических схемах используются двухбуквенные, а в некоторых случаях и многобуквенные обозначения. Маркировка выполняется не только символом общего кода элемента, но и дополнительными буквами, более полно раскрывающими характеристики каждого элемента. С целю упорядочения подобной символики также создана таблица в соответствии с ГОСТом 2.710-81:

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

Символы двухбуквенного кода

Устройства общего назначения

Различные виды аналоговых или многозарядных преобразователей, указательные или измерительные датчики, устройства, преобразующие неэлектрические величины в электрические, за исключением генераторов и источников питания

Детекторы ионизирующих элементы

Датчики частоты вращения – тахогенераторы

Интегральные схемы, микросборки

Схемы интегральные аналоговые

Схемы интегральные, цифровые, логические элементы

Устройства хранения информации

Защитные устройства, предохранители, разрядники

Дискретные элементы токовой защиты мгновенного действия

Дискретные элементы токовой защиты инерционного действия

Дискретные элементы защиты по напряжению, разрядники

Генераторы и другие источники питания

Индикаторные и сигнальные элементы

Приборы звуковой сигнализации

Приборы световой сигнализации

Контакторы, пускатели, реле

Контакторы, магнитные пускатели

Дроссели, катушки индуктивности

Дроссели люминесцентных светильников

Измерительные приборы и оборудование (недопустимо использование маркировки РЕ)

Счетчики активной энергии

Счетчики реактивной энергии

Измерители времени действия, часы

Выключатели и разъединители в силовых цепях

Коммутационные устройства в цепях измерения, управления и сигнализации

Выключатели и переключатели

Выключатели, срабатывающие под действием различных факторов:

— от положения (путевые)

— от частоты вращения

Устройства связи, преобразователи неэлектрических величин в электрические

Выпрямители, генераторы частоты, инверторы, преобразователи частоты

Приборы полупроводниковые и электровакуумные

Антенны, линии и элементы СВЧ

Скользящие контакты, токосъемники

Как определить чередование фаз трехфазного электродвигателя

В процессе монтажа электрооборудования, в частности, параллельного подключения трансформаторов, актуален вопрос о том, как определить чередование фаз трехфазного электродвигателя. С порядком и правильностью чередования связаны:

  • безопасность запуска оборудования;
  • направление вращения роторов асинхронных двигателей (особенно важно, если от них зависит работа нескольких механизмов).

В этой статье приведены основные способы и наиболее широко применяемые для решения этой задачи приборы.

Как определить чередование фаз трехфазного электродвигателя: основные приемы

Если условно обозначить разноименные фазы в любой трехфазной сети (смещение синусоид для них составляет 120°) как A, B и C, то можно выделить следующие варианты порядка чередования:

  • прямые (CAB, BCA, ABC);
  • обратные (ACB, BAC, CBA).

Подключая оборудование к трехфазной сети при помощи силового кабеля, порядок следования фаз можно проверить без применения специальных приборов. При этом ориентируются на цветовую (или цифровую) маркировку изоляции жил электропровода. Следует заметить, что на практике маркировка изоляции может оказаться недостаточным критерием, поскольку не все производители дают гарантию совпадения цвета изоляции жилы в начале и в конце кабеля.

Добиться более надежных результатов позволяет такой доступный и несложный способ «прозвонки» жил, как использование двух телефонных трубок. Одна из трубок при этом является «активной» (снабжена батарейкой питания), другая «пассивная», без питания. Существует парная гарнитура, снабженная наушниками и зажимами, специально для проведения фазировки.

Также можно воспользоваться мегомметром. При этом для персонала обязательно строгое соблюдение мер безопасности.

Контроль фазировки при помощи фазоуказателей

Осуществить контроль фазировки (порядка чередования и одноименности фаз) можно с помощью простого фазоуказателя ФУ 2, который состоит из трех обмоток и вращающегося при проверке алюминиевого диска. Прибор действует по принципу асинхронного двигателя и применяется следующим образом:

  • к выводам подключают 3 провода от источника напряжения;
  • диск начинает вращение;
  • если направление вращения совпадает с направлением стрелки на приборе, то порядок чередования прямой;
  • вращение в противоположную относительно направления стрелки сторону указывает на обратное чередование.

Спросом также пользуется серия портативных фазоуказателей TKF, которая имеет следующие преимущества:

  • компактность и простота в использовании (прибор не требует дополнительного источника питания);
  • удобная светодиодная индикация результатов измерений — три светодиода отвечают за информацию о наличии напряжения на каждой фазе, еще два, R и L, указывают собственно направление чередования фаз;
  • полнофункциональность.

Как определить одноименные фазы

Поскольку как прямое, так и обратное чередование предполагают по три варианта расположения фаз A, B и C, следующим шагом будет определение одноименных фаз. Для этого потребуется мультиметр (или вольтметр), которым замеряют показатели напряжения между фазами источников питания. Данный показатель будет равен нулю между одноименными фазами, их отмечают и таким же образом определяют две другие пары. При отсутствии мультиметра может быть применен осциллограф.

Знание основных принципов контроля чередования фаз и применение современных приборов позволяет избежать нарушения последовательности фаз при подключении дорогостоящего оборудования, обеспечивая тем самым эффективность и безопасность пусконаладочных работ.

Фазировка оборудования — Основные понятия и определения

Страница 2 из 13

Трехфазная система.

Под трехфазной системой ЭДС (напряжений) понимают совокупность трех симметричных ДС, амплитуды, которых равны по значению и сдвинуты (амплитуда каждой ЭДС относительно предшествующей ей амплитуды другой ЭДС) на один и тот же фазный угол. На рис. 1,д приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в. которых наводятся переменные ЭДС, помещены в пазы статора, смещенные по окружности на 120°. Выводам обмоток присвоены обозначения «начал» АБСа «концов» X, Y, Z соответственно. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,6). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения ЭДС. Когда ось ротора/— / пересекает витки обмотки статора, в них наводится максимальная ЭДС. Но так как для трех обмоток статора это происходит в разные моменты времени, то и максимумы наведенных ЭДС не совпадают по фазе, т. е. их амплитуды Ед, Eg, Ее оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.
Фаза. Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае ЭДС), называют фазовым углом или простой фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся ЭДС одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между амплитудами. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения ЭДС при переходе от отрицательных 6 значений к положительным.
Рис. 1. Получение трехфазной симметричной системы ЭДС: 1 — статор; 2 — обмотка статора; 3 — ротор; 4 — обмотка ротора

На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а ). Это свидетельствует о том, что синусоида с началом в точке b отстает по времени от синусоиды с началом в точке а Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на (2/3) Т или на 240° от начала координат (момента, когда / = 0). В равной мере можно говорить, что синусоида с началом в точке а опережает синусоиды с началом в точке b на (1/3) Tvi с началом в точке с — на (2/3) Т.
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы обозначают прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. Краску наносят по всей длине шин.
Шины фазы А окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный. Поэтому фазы часто называют Ж, 3, К. Для распознавания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.
Порядок следования фаз. Порядок, в котором ЭДС в фазных обмотках генератора проходят через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы ЭДС могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,с, то фазы будут следовать в порядке А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить на противоположное, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В — это обратный порядок следования фаз.
Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание путаницы условимся применять термин «Чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.

Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины и т. д.) расположены в пространстве, если обход их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок (ПУЭ) предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при расположении их в вертикальной плоскости: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин в горизонтальной плоскости наиболее удаленная шина окрашивается в желтый цвет, а ближайшая к коридору обслуживания — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза Ж, 8 справа — фаза К, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы Ж, справа — фазы К, если смотреть со стороны шин на трансформатор.
Отступление от указанных выше требований порядка чередования окраски шин РУ ПУЭ допускают в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов BЛ.
Совпадение фаз. При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух систем шин электроустановки имеют одинаковые порядки следования фаз А, В, С и Ах, Bi, С|. При этом условии фазы одноименных напряжений могут совпасть, а порядок чередования обозначений вводов у выключателя может не совпасть (рис- 2, а) или, наоборот, при одном и том же порядке чередования обозначений вводов фазируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2, б). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30е, что Характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к КЗ.
В то же время возможен вариант, когда совпадает и то, и другое (рис. 2, в) — Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда на вводах выключателя, расположенных друг против друга и принадлежащих одной фазе, одноименные напряжения двух частей установки совпадают по фазе, а обозначения (расцветка) вводов выключателя согласованы с соответствующими фазами напряжения и имеют один и тот же порядок чередования.
Векторное изображение синусоидально изменяющихся ЭДС (напряжений, токов). Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами — направленными отрезками прямой линии (рис. 1,в).
Рис. 2. Варианты несовпадения (е. б) и совпадения (в) фаз двух частей электроустановки
Для векторов фазных ЭДС Ej4, Eg. Eq> изображенных на этом рисунке, условно приняты направления от начал обмоток к их концам. Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся ЭДС) на вертикальную ось /-/, перемещаемую по оси абсцисс со скоростью, пропорциональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом V (рис.4). Отставание вектора Eg от вектора Ед показано направлением стрелки угла (против направления вращения векторов).
Следует сказать, что понятие вращающегося вектора ЭДС (напряжения, тока и т.д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике.
Рис. 3. Получение синусоидального графика при вращении вектора
Рис. 4. Изображение двух ЭДС синусоидами и векторами при различных углах сдвига

Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия в пространстве, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, ЭДС трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.

Основные Схемы соединений трехфазных цепей.

Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.
При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, в), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными ЭДС и обозначают Ед, Eg, Ее, или просто £ф. Электродвижущие силы между выводами фаз называют линейными tn. Они получаются как разность векторов соответствующих фазных ЭДС генератора, например Ед — Eg = Едд (рис. 5,в).
Рис. 5. Соединение обмоток генератора в звезду (о), векторная диаграмма ЭДС (б), вычитание векторов фазных ЭДС (в)
Рис. 6. Соединение обмоток генератора треугольником (д) и векторная диаграмма ЭДС (б)
Порядок индексов в обозначении линейных ЭДС не произволен — индексы ставятся в порядке
вычитания векторов: Ев-Ес= Евс\ Ес-Ёл = ЕСА- С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора ЭДС отстающей фазы из вектора ЭДС опережающей. В результате векторы линейных ЭДС всегда опережают уменьшаемые фазные векторы на 30°. Значения линейных ЭДС в \Д или в 1,73, раз больше фазных, в чем легко убедиться измерением векторов на диаграмме.
Соединение обмоток генератора треугольником показано на рис. 6,о. Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными ЭДС промышленной частоты, сдвинутыми относительно друг друга на (1/3) Т, так как в каждый момент времени геометрическая сумма ЭДС, действующих в контуре треугольника, равна нулю. Убедиться в этом можно, рассматривая векторную диаграмму рис.»6, б и синусоиды мгновенных значений ЭДС трехфазного генератора (рис. 1, б).
Рис. 7. Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов:
а — фазы ЭДС Ед и Еа совпадают; б — ЭДС Ед и Eg находятся в противофазе

Из рис. 6, а видно, что при соединении треугольником линейные провода отходят непосредственно от начала и конца обмотки каждой фазы, поэтому фазные ЭДС равны линейным и совпадают с ними по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко и только у турбогенераторов одного типа (ТВС-30).
Обмотки трансформаторов, так же как и генераторов, соединяют в звезду и треугольник (схема зигзага встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки среднего (СН) и низшего (НН) напряжений также соединяют в У или Д.
В отличие от генераторов у мощных трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным [lj.
Группы соединений обмоток трансформаторов. Между первичной я вторичной ЭДС трансформатора, включенного под напряжение, может быть угол сдвига, который в общем случае зависит от схемы соединения и направления намотки обмоток, а также от обозначения (маркировки) зажимов.
Число сочетаний схем соединений У и Д может быть не более четырех: У/У, У/Д, Д/Д и Д/У, но, принимая во внимание возможность намотки обмоток на магнитопроводе в разных направлениях, случайное и преднамеренное изменение маркировки зажимов, а также соединение фазных обмоток в треугольник в ином чередовании, число схем включений трансформатора значительно возрастает. Приведем примеры. У каждой обмотки есть начало и конец. Начала обмоток обозначают буквами А, В, С, а, Ь, с, а концы X, ¥, Z, х, у, г соответственно. И хотя эти понятия условны, они имеют прямое отношение к действующей в обмотке ЭДС.

Рис. 8. Два варианта схем соединения фазных обмоток НН треугольником
Если у одной из обмоток поменять обозначения начала а и конца * (рис. 7), то, принимая ориентацию ЭДС по отношению к новому началу прежней (от * к в ), необходимо считать вектор ЭДС Еа повернутым на 180°. К такому же результату приводит и изменение направления намотки обмоток. В обмотках с односторонней намоткой (витки обеих обмоток идут от начал в правую или левую сторону) ЭДС совпадают по направлению, при разносторонней намотке они сдвинуты на 180°.

Рис. 9. Схемы и группы соединения обмоток трансформаторов и автотрансформаторов :
а — трехфазных двухобмоточных трансформаторов; б — трехфазных трехобмоточнмх трансформаторов; в — трехфазных трехобмоточных автотрансформаторов

Рис. 10. Циклическая перемаркировка фаз обмотки в стандартной схеме. У/У-0
На рис. 8, а показано соединение фазных обмоток треугольником в стандартном порядке: а — у; Ь— z; с — х. Если обмотки соединить в порядке Oi — zt; сх — уЬг — xt (рис. 8,6), то векторы линейных ЭДС НН смещаются по отношению друг к другу на 60° (рис. 8, в) *
Чтобы упорядочить все многообразие схем соединений обмоток трансформаторов, введено понятие о группе соединений, характеризующее угловое смещение векторов линейных ЭДС вторичных обмоток относительно одноименных векторов линейных ЭДС обмотки ВН независимо от того, является трансформатор понижающим или повышающим.
Рис. 11. Циклическая перемаркировка фаз при ошибочном монтаже ошиновки. Обозначение фаз НН, соответствующее группе У/У-О, показано в скобках

Группа соединений обозначается числом, которое при умножении на 30° дает угол отставания вектора ЭДС вторичной обмотки от ЭДС Вектора первичной обмотки. Если, например, схема и группа соединений трансформатора обозначены У/Д-11, то смещение векторов линейных ЭДС равно 330°.
В ГОСТ 11677-75* предусмотрены две группы соединения обмоток трехфазных двухобмоточных трансформаторов: 0 и 11 (рис.9). Практически могут встретиться 12 групп и, кроме того, такие соединения, которые вообще не могут быть отнесены к какой-либо определенной группе. Заметим, что нестандартные группы могут быть получены ошибочно при монтаже и ремонте оборудования без вскрытия трансформатора и пересоединения его обмоток. Для этого достаточно, например, перекрасить шины фаз или перемаркировать обозначения выводов и потом ориентироваться на эти обозначения. Типичными являются следующие случаи. При перемещении обозначений выводов фаз (циклическая перемаркировка фаз), когда по кругу меняются местами надписи на выводах трех фаз на стороне ВН или НН (рис. 10), группа соединений каждый раз изменяется на 4 или 8 угловых единиц. Так, при подсоединении трансформатора зажим фазы b может ошибочно оказаться подсоединенным к сборной шине фазы а, зажим с — к шине фазы Л и т. д. Такое подсоединение равносильно перемаркировке фаз и влечет за собой изменение исходной группы трансформатора на 4 единицы. Действительно, построение и совмещение векторных диаграмм (рис.11) показывает, что векторы повернуты на 120°, или на 4 единицы.

*В построениях векторных диаграмм на рнс. 8 и далее принято направление векторов линейных ЭДС (напряжений) обмоток ВН от В к А и обмоток НН — от Ь к а .

Рис. 12. Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН: а — исходная группа У/Д-11; б — перемаркировка одноименных фаз А и С, а и с; в — перемаркировка разноименных фаз А и С.

Рис. 13. Ошибочное обозначение выводов двух фаз b и с на стороне низшего напряжения
Перестановка обозначений двух фаз на стороне ВН и одновременно НН (двойная перемаркировка) у трансформатора, имеющего нечетную группу соединений, вызывает угловое смещение векторов ЭДС вторичной обмотки относительно их первоначального положения на 60 или 300°. Значение угла зависит от того, какие две фазы на стороне ВН, а также на стороне НН перемещаются — одноименные или разноименные. На рис. 12 показано, что достаточно поменять местами соединительные шины двух фаз А и С на стороне ВН и тех же фаз на стороне НН, как группа 11 перейдет в группу 1, а при перемене мест фаз А и С и. одновременно Ь и с группа 11 превращается в 9.
Наиболее вероятен в эксплуатационной практике случай перекрещивания шин только двух фаз на какой-нибудь одной стороне (ВН или НН), например фаз b и с. При этом изменяется порядок чередования фаз. Вместо а — b -с порядок чередования будете — с — Ь (рис. 13), и углы сдвига фаз одноименных ЭДС обмоток ВН и НН будут неодинаковы: = 0°; ifpb = 120°; \fCc — 240°. Это обстоятельство не позволяет отнести трансформатор к определенной группе соединений.
Одним из основных условий параллельной работы трансформаторов является тождественность групп соединений их обмоток, что устанавливается по паспортным данным или специальными измерениями. Но даже при одинаковых группах перед первым включением в работу (после монтажа или капитального ремонта со сменой обмоток, отсоединением кабелей и пр.) трансформатор фазируют с сетью, так как на зажимах включающего аппарата (выключателя, отделителя, рубильника) может появиться сдвиг фаз в результате неправильного присоединения токоведущих частей к аппаратам и выводам трансформатора, о чем было сказано выше. Здесь следует особо подчеркнуть, что цель фазировки заключается не в определении группы, к которой принадлежит включаемый трансформатор, а в проверке согласованности соединяемых фаз всех элементов трехфазной цепи со стороны как высшего, так и низшего напряжения.

Территория электротехнической информации WEBSOR

  • Основы
    • Электробезопасность
      • Действие на человека
      • Защитные меры
      • Первая помощь
      • Электробезопасность в установках до 1000 В с глухозаземленной и изолированной нейтралью
      • Средства защиты
        • Указатель высокого напряжения УВНУ-10СЗ ИП
        • Указатель низкого напряжения ЭЛИН-1-СЗ
        • Когти КРПО
    • Теоретические основы электротехники
    • Электрические процессы в вакууме и газах
      • Термоэлектронная эмиссия металлов
      • Термоэлектронная эмиссия оксидного катода
      • Электростатическая электронная эмиссия
      • Фотоэлектронная эмиссия
      • Вторичная электронная эмиссия
      • Электронная эмиссия
      • Прохождение тока в вакууме
      • Столкновение электронов
      • Движение электронов
      • Виды электрического разряда
      • Темный разряд
      • Тлеющий разряд
      • Дуговой разряд
      • Газовая плазма
      • Коронный, искровой и высокочастотные разряды
    • Измерение величин
      • Единицы электрических величин
      • Характеристика средств
      • Электросчетчик ЦЭ6803ВМ
      • Мегаомметр
    • Электротехнические материалы
      • Классификация веществ по электрическим свойствам
      • Диэлектрики
        • Классификация диэлектриков
        • Поляризация диэлектриков
        • Электропроводность диэлектриков
        • Пробой диэлектриков
        • Электрическая прочность воздушных промежутков
        • Разряд по поверхности твердого диэлектрика
        • Разряд в масле
      • Полупроводниковые материалы
        • Электропроводность полупроводников
        • Получение и свойства полупроводников
        • Характеристики полупроводниковых материалов
      • Проводниковые материалы
        • Общие сведения
        • Медь
        • Алюминий
    • Задачи и ответы
  • Электромашины
    • Определения и требования
      • Номинальные режимы и номинальные величины
      • Общие определения
      • Технические требования
      • Потери мощности и КПД
      • Обозначение обмоток
      • Номинальные частоты вращения эл.машин
    • Электрические машины переменного тока
      • Устройство 3-ф асинхронных и синхронных машин
      • Машинная постоянная, электромагнитные нагрузки
      • Якорные обмотки и обмотки возбуждения
      • Электродвижущая и намагничивающая силы
      • Обмотки типа бельчьей клетки
      • Активные сопротивления обмоток
      • Индуктивные сопротивления обмоток
    • Асинхронные машины
      • Активные и индуктивные сопротивления обмоток
      • Расчет магнитной цепи
      • Основные уравнения, схемы замещения и векторная диаграмма
      • Основные энергетические соотношения и механическая характеристика
      • Потери и КПД
      • Круговая диаграмма, рабочие характеристики
      • Определение главных размеров двигателей
      • Неполадки в работе асинхронного двигателя
    • Теория
      • Асинхронный двигатель
      • Синхронные машины
      • Машины постоянного тока
      • Трансформаторы
    • Трансформаторы
      • Трансформаторы силовые масляные
      • Текущий ремонт трансформаторов ТМ
      • Трансформаторы силовые типа ТМ(Г) и ТМПН(Г)
      • Трансформаторы ТМГ11 и ТМГСУ11
      • Трансформаторы ТМГ12
      • Трансформаторы ТМГ21
      • Трансформаторы ОМ, ОМП, ОМГ
      • Трансформаторы ТСГЛ, ТСЗГЛ
      • Трансформаторы ТС, ТСЗ
      • Параллельная работа трансформаторов
      • Потеря напряжения в трансформаторе
      • Группы соединений обмоток трансформаторов
      • Неисправности трансформаторов
      • Трансформаторное масло
    • Защита электродвигателей
  • Оборудование
    • Защита электрооборудования
    • Модульные устройства
      • Выключатели автоматические
      • Характеристика автомат. выкл.
      • Устройства защитного отключения (УЗО)
      • Выбор и применение УЗО
      • Причины срабатывания УЗО
      • Дифференциальные автомат. выкл.
      • Выключатели нагрузки
      • Контакторы модульные
      • Ограничитель импульсных перенапряжений
      • Дополнительные устройства
      • Таймер электронный
    • Электрощитовое оборудование
      • Щиты силовые
        • Вводно — распределительные устройства ВРУ
        • Распредустройство низкого напряжения
        • Пункты распределительные ПР
        • Распределительные силовые шкафы ШРС
        • Панели щитов ЩО 70
        • Щиты этажные ЩЭ
        • Ящики управления
        • Шкафы учета электроэнергии ШУЭ
        • Щиты осветительные ОЩВ, УОЩВ
        • Ящики и шкафы АВР, блоки и панели управления БУ, ПУ
        • Щиты автоматического переключения ЩАП
        • Щит учета выносного типа
        • Щитки для хозяйственных нужд
        • Вводное устройство ВУА
      • Корпуса электрощитов
        • Щиты распределительные ЩРН, ЩРВ
        • Щиты учетно-распределительные ЩРУН
        • Щиты с монтажной панелью ЩРНМ, ЩМП
        • Устройство этажное распределительное УЭРМС
        • Устройство этажное распределительное блочного типа УЭРБ
        • Корпус для щита этажного ЩЭ
        • Панели для установки однофазного счетчика ПУ
      • Шкафы напольные
        • Шкафы сборно-разборные
        • Каркасы ВРУ
        • Шкафы цельносварные
        • Шкаф наружного освещения ШНО
        • Шкаф управления наружным освещением
    • Электромонтажные изделия
      • Коробки
        • Установочные коробки в сплошные стены
        • Установочные коробки в полые стены
        • Распаячные (разветвительные) коробки в сплошные стены
        • Распаячные (разветвительные) коробки в полые стены
        • Коробки с кабельными вводами открытой установки
        • Коробки для монолитного строительства
        • Коробки для открытой установки с клеммной колодкой, нулевой шиной
        • Особенности монтажа
      • Трубы
      • Лотки
      • Электромонтажные короба
      • Шина нулевая
      • Соединители, сжимы ответвительные, наконечники
      • Стяжки(хомуты)
      • Термоусаживаемые трубки
      • Электроустановочные устройства
        • Выключатели и розетки
        • Требования к монтажу электроустановочных устройств
        • Требования к электрооборудованию ванных и душевых
    • Провод и кабель
      • Маркировка и характеристика
      • Кабельная продукция
      • ПРИЛОЖЕНИЕ по кабельной продукции
        • ПРИЛОЖЕНИЕ (стационарная прокладка)
        • ПРИЛОЖЕНИЕ (нестационарная прокладка)
        • ПРИЛОЖЕНИЕ (провода силовые)
        • ПРИЛОЖЕНИЕ (провода различного назначения)
      • Выбор провода
      • Соединение проводов
      • Советы по выбору кабеля
      • Кабельные муфты
    • Автоматические выключатели
      • ВА-88
      • ВА-99
      • ВА-99М
      • ВА-99С
      • ВА-45
      • Выбор ВА
      • АПД
      • АВМ
    • Контакторы
      • Контакторы малогабаритные КМЭ
      • Контакторы малогабаритные КМИ
      • Контакторы КМИ в оболочке
      • Контакторы серии КТИ
      • Контакторы серии КТ
      • Пускатели серии ПРК
      • Применение контакторов
    • Фазировка оборудования
    • Выполняем ВСЕ электромонтажные работы
  • Нормы
    • ГОСТы, справочная информация, правила
    • Все про заземление
    • Классификация помещений
    • Требования к электрооборудованию
    • Характеристика проводниковых и изоляционных материалов
    • ГОСТ, СНиП, СП, ТУ
      • Содержание по нормативным документам
      • СНиП 3.05.06-85 Электротехнические устройства
      • ГОСТ 10434-82 Соединения контактные электрические
      • ГОСТ 12.1.030-81 ССБТ Электробезопасность
      • ГОСТ 13781.0-86. Муфты для силовых кабелей на напряжение до 35 кВ
      • ГОСТ 11677-85. Трансформаторы силовые
      • ГОСТ 14695-80 ( СТ СЭВ 1127-78). Подстанции трансформаторные комплектные
      • ГОСТ 9.032-74. Покрытия лакокрасочные
    • Данные для расчета осветительной сети
    • Разложение в ряд Фурье
    • Свод правил по проектированию и строительству
    • Технические условия на СИП
    • Электропроводки
    • Прокладка кабелей до 35 кВ
  • Подстанция
    • Комплектные трансформаторные подстанции
      • Номенклатура КТП
    • Оборудование подстанций
      • Выключатели нагрузки ВНР
      • Рубильники, ящики силовые
      • Разъединители РЕ-19
      • Разъединители РЦ
      • Разъединители на 630 А
      • Шины
      • КСО-366, КСО-272, КРУ
      • Изоляторы
      • Разъединители РВ
      • Техническое описание разъединителей
      • Предохранители до 1000В
      • Высоковольтные предохранители
      • Приводы к выключателям напряжением 3-10 кВ
      • Техническое описание привода ППВ-10
    • Вакуумные выключатели
      • ВВ/TEL
      • ВР
      • ВРО
      • ВР1
      • ВР1 для КСО
      • ВРС
      • 3АН5
      • ВГГ-10
    • Камеры КСО
      • КСО-298 НН «Классика»
      • КСО 298АТ, КСО 298АТ-М, КСО 292АТ, КСО 285АТ, КСО 272АТ, КСО 2(УМЗ)АТ
      • КСО 366АТ, КСО 366АТ-В
      • КСО 393АТ, КСО 393АТ-М
      • КСО «Новация»
      • КРУ «Классика» серии D-12PT
      • КРУ серии «Эталон»
      • КСО-298 «СТАНДАРТ»
      • КСО-298 РУЭЛТА
      • КРУ серии R-40 (35 кВ)
    • Ограничители перенапряжений 6(10) кВ
    • Масляный выключатель
      • ВПМ-10
      • Техническое описание ВПМ
      • ВМП-10
      • ВМГ-133
    • Выключатель нагрузки автогазовый ВНА
      • Описание выключателя
      • Изображение выключателя
    • Ремонт электрооборудования
      • Эксплуатация и ремонт электрооборудования РУ
      • Ремонт масляных выключателей
      • Ремонт контактных частей РУ
      • Ремонт привода ПП-67 масляных выключателей
      • Особенности устройства и ремонта привода ППВ (ППО)
      • Особенности устройства и ремонта привода ПЭ-11
    • Повышение надежности МВ, приводов МВ
      • Наладка заводящего устройства пружинного привода
      • Наладка механизма включения пружинного привода
      • Наладка механизма отключения пружинного привода
      • Регулировка МВ с пружинным приводом
      • Регулировка МВ с электромагнитным приводом
      • Повышение надежности ВМП-10 и ВМГ-133
    • Установки компенсации реактивной мощности
      • Общие сведения об УКРМ
      • УКРМ 0,4 кВ
      • УКРМ 6(10) кВ
    • Выбор места расположения питающих подстанций
  • Электроснабжение
    • Понятие электроснабжения
      • Распределение электроэнергии
      • Электроснабжение административных зданий
      • Электроснабжение жилых зданий
      • Электропроводка
    • Расчет нагрузок
      • Расчетные нагрузки промышленных предприятий
      • Расчетные нагрузки жилых и общественных зданий
      • Допустимые токовые нагрузки на провода и кабели
    • Выбор максимальной токовой защиты линий
    • Выбор сечений по допустимой потере напряжения
      • Активные и индуктивные сопротивления линии
      • Расчет сети по допустимой потере напряжения без учета индуктивного сопротивления
      • Расчет сети по потере напряжения с учетом индуктивности линий
      • Расчет сети при помощи вспомогательных таблиц удельных потерь напряжения
      • Примеры расчетов сечений проводов и кабелей по допустимой потере напряжения
      • Расчет сети по условию наименьшей затраты металла
      • Расчет сети по условию постоянной плотности тока
    • Короткие замыкания в электрических системах
      • Общие указания к расчету токов к.з.
      • Трехфазное короткое замыкание
      • Несимметричные короткие замыкания
      • Короткое замыкание с одновременным разрывом фазы
      • Определение токов короткого замыкания для выбора выключателей
      • Токи короткого замыкания от электродвигателей
    • Выбор проводников по устойчивости к току к.з.
    • Проверка условий срабатывания защитного аппарата
    • Выбор проводов по экономической плотности тока
    • Шины и шинопроводы в системах электроснабжения
      • Распределение тока по сечению шин из цветного металла
      • Определение активного и реактивного сопротивлений шинопровода
      • Потери мощности и напряжения в шинопроводах
      • Выбор сечения шинопроводов
      • Проверка выбранного сечения шинопровода
      • Колебания шинопроводов, имеющих поворот
    • Потери мощности в сетях
    • Переходные процессы в электрических системах
      • Математическое описание переходных процессов
      • Переходные процессы при больших кратковременных возмущениях
      • Режимы при больших возмущениях
      • Режимы при малых возмущениях
      • Улучшение пропускной способности электрических систем
    • Регулирование напряжения
      • Регулирование напряжения в сетях
      • Местное регулирование напряжения
    • Внутренние перенапряжения сетей
      • Перенапряжения и защита от перенапряжений
      • Характеристика уровней изоляции сетей 6-35кВ
      • Характеристика внутренних перенапряжений
  • Освещение
    • Величины и единицы освещения
    • Источники света
    • Методы искусственного освещения
    • Расчет и защита осветительных сетей
    • Расчет освещения по методу коэф-та использования и удельной мощности
    • Расчет освещения по точечному методу
    • Специальные случаи светотехнических расчетов
    • Расчет качественных характеристик освещения
    • Наружное освещение
    • Подробный расчет осветительной сети
    • Основные требования и выбор освещенности
    • Системы и виды освещения
    • Управление освещением
    • Проектирование освещения
    • Ремонт светильников с люминесцентными лампами
    • Умный дом
  • Воздушная линия
    • Проектирование ВЛИ — 0,4кВ
    • Расчетные пролеты ВЛ — 0,4 кВ
    • Линейная арматура ENSTO для ВЛИ 0,4кВ
    • Линейная арматура NILED для ВЛИ 0,4кВ
    • Вводы линий электропередачи до 1 кВ в помещения
    • Применение линейной арматуры на ВЛЗ 6-20кВ
    • Оборудование для ВЛ(З)-6(10)кВ
    • Проектирование ВЛЗ — 6(10)кВ
    • Нарушения при монтаже СИП
    • Установка длинно-искровых разрядников РДИП на ВЛЗ-10кВ
    • Стальные конструкции для строительства ВЛИ-0,4кВ, ВЛЗ-6(10)кВ
    • Аналоги NILED
    • Пример расчета ВЛИ-0,4 кВ
    • Заземляющие устройства опор ВЛ
    • Узлы и детали соединений заземляющих проводников ВЛ 0,38-35 кВ

admin

Поadmin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *